Main Fitting Functions

The main function to fit the Cox-non proportional hazards model

coxtv()

fit a Cox non-proportional hazards model

coxtp()

fit a Cox non-proportional hazards model with P-spline or Smoothing-spline, with penalization tuning parameter chosen by information criteria or cross-validation

cv.coxtp()

fit a cross-validated Cox non-proportional hazards model with P-spline or Smoothing-spline where penalization tuning parameter is provided by cross-validation

Information Criteria

Calculating the Information Criteria to select the tunning paratmeter for the penalized methods

IC()

calculating information criteria from a coxtp object

Tests of Cox-non proportional hazards model

tvef.ph()

testing the proportional hazards assumption from a coxtv or coxtp object

tvef.zero()

testing the significance of the covariates from a coxtv or coxtp object

tvef.zero.time()

testing the significance of the covariates from a coxtv or coxtp object using a Wald test statistic

Helper functions

get.tvcoef()

helper function to get time-varying coefficients

confint(<coxtp>) confint(<coxtv>)

get confidence intervals of time-varying coefficients from a fitted object

plot(<coxtp>)

plotting results from a fitted coxtp object

plot(<coxtv>)

plotting results from a fitted coxtv object

baseline()

calculating baseline hazard and baseline cumulative hazard using the result from a coxtv or coxtp object

plot(<baseline>)

plotting the baseline hazard

Package data sets

ExampleData

example data with 2000 observations of 2 continuous variables

ExampleDataBinary

example data with 2000 observations of 2 binary variables

StrataExample

example data for stratified model illustration

support

Study to Understand Prognoses Preferences Outcomes and Risks of Treatment