This function creates a plot of the time-varying coefficients from a fitted coxtp
model.
# S3 method for coxtp
plot(
x,
parm,
CI = TRUE,
level = 0.95,
exponentiate = FALSE,
xlab,
ylab,
xlim,
ylim,
allinone = FALSE,
title,
linetype,
color,
fill,
time,
...
)
model obtained from coxtp
.
covariate names fitted in the model to be plotted. If NULL
, all covariates are plotted.
if TRUE
, confidence intervals are displayed. The default value is TRUE
.
the level of confidence intervals. The default value is 0.95
.
if TRUE
, exponential scale of the fitted coefficients (hazard ratio) for each covariate is plotted.
If FALSE
, the fitted time-varying coefficients (log hazard ratio) are plotted.
the title for the x axis.
the title for the y axis.
the limits for the x axis.
the limits for the y axis.
if TRUE
, the time-varying trajectories for different covariates are combined into a single plot. The default value is FALSE
.
the title for the plot.
the line type for the plot.
the aesthetics parameter for the plot.
the aesthetics parameter for the plot.
the time points for which the time-varying coefficients to be plotted. The default value is the unique observed event times in the dataset fitting the time-varying effects model.
other graphical parameters to plot
data(ExampleData)
z <- ExampleData$z
time <- ExampleData$time
event <- ExampleData$event
fit <- coxtp(event = event, z = z, time = time)
#> Iter 1: Obj fun = -3.2986480; Stopping crit = 1.0000000e+00;
#> Iter 2: Obj fun = -3.2920862; Stopping crit = 2.1176619e-02;
#> Iter 3: Obj fun = -3.2920355; Stopping crit = 1.6361107e-04;
#> Iter 4: Obj fun = -3.2920353; Stopping crit = 3.7757230e-07;
#> Algorithm converged after 4 iterations!
#> lambda 0.1 is done.
#> Iter 1: Obj fun = -3.3017443; Stopping crit = 1.0000000e+00;
#> Iter 2: Obj fun = -3.2954100; Stopping crit = 2.0664261e-02;
#> Iter 3: Obj fun = -3.2953323; Stopping crit = 2.5346890e-04;
#> Iter 4: Obj fun = -3.2953321; Stopping crit = 4.6097119e-07;
#> Algorithm converged after 4 iterations!
#> lambda 1 is done.
#> Iter 1: Obj fun = -3.3094946; Stopping crit = 1.0000000e+00;
#> Iter 2: Obj fun = -3.3042222; Stopping crit = 1.7708812e-02;
#> Iter 3: Obj fun = -3.3041817; Stopping crit = 1.3597425e-04;
#> Iter 4: Obj fun = -3.3041817; Stopping crit = 6.0903557e-08;
#> Algorithm converged after 4 iterations!
#> lambda 10 is done.
plot(fit$lambda1)