Skip to contents

Suppose we have total nn subjects from mm transplant centers with nin_i records from center ii (i=1,...,mi = 1, ..., m). Coefficients of risk factors are denoted by 𝛃\boldsymbol{\beta} = (Ξ²1,…,Ξ²P)T(\beta_1, \dots, \beta_P)^T, and let 𝛄=(Ξ³1,...,Ξ³m)T\boldsymbol{\gamma} = (\gamma_1, ..., \gamma_m)^T denote the effect of centers.

Generalized Linear Models

Let YijY_{ij} denotes the outcome variable for record j(j=1,...,nij \ (j = 1, ..., n_i) of center ii, and let 𝐗ij\boldsymbol{X}_{ij} be the corresponding 1Γ—P1 \times P vector of risk factors. We assume that given the linear predictor Ξ·ij:=Ξ³i+𝐗ij𝛃\eta_{ij} := \gamma_i + \boldsymbol{X}_{ij}\boldsymbol{\beta}, the outcome YijY_{ij} follows a distribution in the exponential family. Incorporate with penalty terms, our problem of interest is estimating 𝛉=(𝛄T,𝛃T)T\boldsymbol{\theta} = (\boldsymbol{\gamma}^T, \boldsymbol{\beta}^T)^T by minimizing:

QΞ»(𝛉)=βˆ’1nβˆ‘i=1mβˆ‘j=1ni{Yij(Ξ³i+𝐗ij𝛃)βˆ’b(Ξ³i+𝐗ij𝛃)}+βˆ‘p=1PΞ»p|Ξ²p|,Q_{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n}\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \{Y_{ij}(\gamma_i + \boldsymbol{X}_{ij}\boldsymbol{\beta}) - b(\gamma_i + \boldsymbol{X}_{ij}\boldsymbol{\beta})\} + \sum_{p = 1}^P \lambda_{p} |\beta_p|, where Ξ»p\lambda_{p}(p=1,2,...,P)(p = 1,2,...,P) is the regularization parameter for Ξ²p\beta_p.

Two-layer iterative update procedure

outer layer: update the provider effect 𝛄\boldsymbol{\gamma}

Given the previous iteration’s estimate of 𝛃\boldsymbol{\beta} (denoted as 𝛃̃\tilde{\boldsymbol{\beta}}), consider QΞ»,𝛄(𝛄)∝QΞ»((𝛄T,𝛃̃T)T)Q_{\lambda, \boldsymbol{\gamma}}(\boldsymbol{\gamma}) \propto Q_{\lambda}((\boldsymbol{\gamma}^T, \tilde{\boldsymbol{\beta}}^T)^T) that is defined as QΞ»,𝛄(𝛄)=βˆ’1nβˆ‘i=1mβˆ‘j=1ni{Yij(Ξ³i+𝐗ij𝛃̃)βˆ’b(Ξ³i+𝐗ij𝛃̃)}. Q_{\lambda, \boldsymbol{\gamma}}(\boldsymbol{\gamma}) = - \frac{1}{n} \sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \{Y_{ij}(\gamma_i + \boldsymbol{X}_{ij} \tilde{\boldsymbol{\beta}}) - b(\gamma_i + \boldsymbol{X}_{ij} \tilde{\boldsymbol{\beta}})\}.

Since the score function of QΞ»,𝛄(𝛄)Q_{\lambda, \boldsymbol{\gamma}}(\boldsymbol{\gamma}) is separable for 𝛄\boldsymbol{\gamma} and the fisher information matrix is diagonal, Ξ³i\gamma_i can be updated separately using only a subset of the entire data by a one-step Newton procedure:

Ξ³Μ‚i=Ξ³iΜƒ+IΞ»βˆ’1(Ξ³Μƒi)UΞ»(Ξ³Μƒi).\hat{\gamma}_i = \tilde{\gamma_i} + I_{\lambda}^{-1}(\tilde{\gamma}_i) U_{\lambda}(\tilde{\gamma}_i).

inner layer: update the covariate coefficient 𝛃\boldsymbol{\beta}

Based on the updated value of 𝛄\boldsymbol{\gamma} (i.e.Β the 𝛄̂\hat{\boldsymbol{\gamma}} that was updated previously), consider QΞ»,𝛃(𝛃)=QΞ»((𝛄̂T,𝛃T)T)=1nβ„’Ξ²(𝛃)+βˆ‘p=1PΞ»p|Ξ²p|,Q_{\lambda, \boldsymbol{\beta}}(\boldsymbol{\beta}) = Q_{\lambda}((\hat{\boldsymbol{\gamma}}^T, \boldsymbol{\beta}^T)^T) = \frac{1}{n}\mathcal{L}_{\beta}(\boldsymbol{\beta}) + \sum_{p = 1}^P \lambda_{p} |\beta_p|, where β„’Ξ²(𝛃)=βˆ’βˆ‘i=1mβˆ‘j=1ni{Yij(Ξ³Μ‚i+𝐗ij𝛃)βˆ’b(Ξ³Μ‚i+𝐗ij𝛃)}\mathcal{L}_{\beta}(\boldsymbol{\beta}) = - \sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \{Y_{ij}(\hat{\gamma}_i + \boldsymbol{X}_{ij} \boldsymbol{\beta}) - b(\hat{\gamma}_i + \boldsymbol{X}_{ij} \boldsymbol{\beta})\}.

The coordinate-wise updating function of 𝛃\boldsymbol{\beta} utilizing the sub-differential calculus is given by: Ξ²Μ‚p=S{βˆ‘i=1mβˆ‘j=1niwΜƒijXijp(Z(Ξ·Μƒij)βˆ’Ξ³Μ‚iβˆ’π—ij𝛃̂(βˆ’p)),nΞ»p}βˆ‘i=1mβˆ‘j=1niwΜƒijXijp2,\hat{\beta}_p = \frac{S\{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \tilde{w}_{ij} {X_{ijp}} (Z(\tilde{\eta}_{ij}) - \hat{\gamma}_i - \boldsymbol{X}_{ij} \hat{\boldsymbol{\beta}}_{(-p)}), n\lambda_p\}}{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \tilde{w}_{ij} {X_{ijp}}^2}, where S(Z,Ξ»)={Zβˆ’Ξ»,ifZ>Ξ»0,ifβˆ’Ξ»β‰€Z≀λZ+Ξ»,ifZ<βˆ’Ξ»,S(Z, \lambda) = \begin{cases} Z - \lambda,\ \ \text{if} \ \ \ Z > \lambda \\ \ \ \ 0, \ \ \ \ \ \text{if} \ -\lambda \leq Z \leq \lambda \\ Z + \lambda, \ \ \text{if} \ \ \ Z < -\lambda \end{cases},Z(Ξ·Μƒij)=Ξ³Μ‚i+𝐗ijπ›ƒΜƒβˆ’{β„’Ξ·β€³(π›ˆΜƒ)βˆ’1β„’Ξ·β€²(π›ˆΜƒ)}ij,Z(\tilde{\eta}_{ij}) = \hat{\gamma}_i + \boldsymbol{X}_{ij} \tilde{\boldsymbol{\beta}} - \{\mathcal{L}_{\eta}''(\tilde{\boldsymbol{\eta}}) ^{-1} \mathcal{L}_{\eta}'(\tilde{\boldsymbol{\eta}})\}_{ij}, and Ο‰Μƒij=β„’Ξ·β€³(π›ˆΜƒ)ij.\tilde{\omega}_{ij} = \mathcal{L}_{\eta}''(\tilde{\boldsymbol{\eta}})_{ij}.

Extensions: Covariates with Group Information

Let 𝐗ij\boldsymbol{X}_{ij} be a 1Γ—βˆ‘k=1Kpk1 \times \sum_{k = 1}^K p_k vector of risk factors that are divided into KK non-overlapping groups (pkp_k denotes the length of group kk). The coefficients of risk factors are denoted by 𝛃\boldsymbol{\beta} = (𝛃1T(\boldsymbol{\beta}_1^T, …, 𝛃KT)T\boldsymbol{\beta}_K^T)^T. Given the observed data {(Yij,𝐗ij)}\{(Y_{ij}, \boldsymbol{X}_{ij})\}, our problem of interest becomes estimating 𝛉=(𝛄T,𝛃T)T\boldsymbol{\theta} = (\boldsymbol{\gamma}^T, \boldsymbol{\beta}^T)^T by minimizing QΞ»(𝛉)=1nβ„’(𝛉)+βˆ‘k=1KΞ»k||𝛃k||2, Q_{\lambda}(\boldsymbol{\theta}) = \frac{1}{n} \mathcal{L}(\boldsymbol{\theta}) + \sum_{k = 1}^K \lambda_k ||\boldsymbol{\beta}_k||_2, where β„’(𝛉)=βˆ’βˆ‘i=1mβˆ‘j=1ni{Yij(Ξ³i+βˆ‘k=1K𝐗ijk𝛃k)βˆ’b(Ξ³i+βˆ‘k=1K𝐗ijk𝛃k)}\mathcal{L}(\boldsymbol{\theta}) = - \sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \{Y_{ij}(\gamma_i + \sum_{k = 1}^K \boldsymbol{X}_{ijk}\boldsymbol{\beta}_k) - b(\gamma_i + \sum_{k = 1}^K \boldsymbol{X}_{ijk}\boldsymbol{\beta}_k)\} is the loss function, and ||𝛃k||2||\boldsymbol{\beta}_k||_2 is the L2L_2 norm of 𝛃k\boldsymbol{\beta}_k. Ξ»k\lambda_k is the regularization parameter on group kk with default Ξ»k=Ξ»pk\lambda_k = \lambda \sqrt{p_k}.

In the outer layer of each iteration, the center effects 𝛄\boldsymbol{\gamma}’s are updated the same way as we discussed previously.

In the inner layer, we use the Majorize-Minimization (MM) algorithm to improve the efficiency of our algorithm for binary outcomes. Based on the current value of 𝛄̂\hat{\boldsymbol{\gamma}}, the subdifferential-based group-wise updating function of the objective function is given by 𝛃k={(||𝐳̃k||βˆ’Ξ»kv)𝐳̃k||𝐳̃k||,ifvβ‹…||𝐳̃k||>Ξ»k0,ifvβ‹…||𝐳̃k||≀λk,\boldsymbol{\beta}_k = \begin{cases} (||\tilde{\boldsymbol{z}}_k|| - \frac{\lambda_k}{v}) \frac{\tilde{\boldsymbol{z}}_k}{||\tilde{\boldsymbol{z}}_k||}, & \text{if} \ \ v\cdot||\tilde{\boldsymbol{z}}_k|| > \lambda_k \\ 0, & \text{if} \ \ v\cdot||\tilde{\boldsymbol{z}}_k|| \leq \lambda_k \end{cases}, where 𝐳̃k=1n𝐗kT(Z(π›ˆΜƒ)βˆ’π›„Μ‚βˆ’π—π›ƒΜƒ(βˆ’k))\tilde{\boldsymbol{z}}_k = \frac{1}{n} {\boldsymbol{X}_k}^T (Z(\tilde{\boldsymbol{\eta}}) - \hat{\boldsymbol{\gamma}} - \boldsymbol{X} \tilde{\boldsymbol{\beta}}_{(-k)}) and v=0.25v = 0.25. 𝛃̃(βˆ’k)\tilde{\boldsymbol{\beta}}_{(-k)} is the most recently updated value of 𝛃\boldsymbol{\beta} but set 𝛃̃k\tilde{\boldsymbol{\beta}}_k to 𝟎\boldsymbol{0}, Z(π›ˆΜƒ)=𝐘Z(\tilde{\boldsymbol{\eta}}) = \boldsymbol{Y} for continuous outcome and Z(π›ˆΜƒ)=𝛄̂+𝐗𝛃̃+1v(π˜βˆ’π©Μƒ)Z(\tilde{\boldsymbol{\eta}}) = \hat{\boldsymbol{\gamma}} + \boldsymbol{X} \tilde{\boldsymbol{\beta}} + \frac{1}{v}(\boldsymbol{Y} - \tilde{\boldsymbol{p}}) for binary outcome.

Discrete Survival Logistic Model

Let TΜƒij\tilde{T}_{ij} represent the underlying uncensored failure time and CijC_{ij} be the censoring time of individual jj of center ii. Let 𝐙ij\boldsymbol{Z}_{ij} denote the 1Γ—p1 \times p vector of risk factors of jthj^{th} individual from center ii, Ξ”i\Delta_i is the center indicator, and TijT_{ij} be the corresponding observed failure or censor time with ⋃{Tij}={t1,t2,...,tK}\bigcup\{T_{ij}\} = \{t_{1}, t_{2}, ..., t_{K}\}, where t1<t2<β‹―<tKt_{1} < t_{2} < \cdots < t_{K} is the discrete failure times indexed by m=1,2,...,Km = 1, 2, ..., K. We assume that TΜƒij\tilde{T}_{ij} is independent with CijC_{ij} given 𝐙ij\boldsymbol{Z}_{ij} and Ξ”i\Delta_i. Let Ξ»(tk;𝐙ij,Ξ”i)=P(TΜƒij=ti|TΜƒijβ‰₯tk,𝐙ij,Ξ”i)\lambda(t_k; \boldsymbol{Z}_{ij}, \Delta_i) = P(\tilde{T}_{ij} = t_i | \tilde{T}_{ij} \geq t_k, \boldsymbol{Z}_{ij}, \Delta_i) be the hazard for the individual with risk factor 𝐙ij\boldsymbol{Z}_{ij} and from center ii at time tkt_k, and let π’Ÿi,k\mathcal{D}_{i,k} and π’ži,k\mathcal{C}_{i,k} be the set of indices attached to individuals from center ii failing and censoring at tkt_k, respectively.

The full likelihood function is given by

L=∏k=1K∏i=1m{∏jβˆˆπ’Ÿi,k[F(tkβˆ’;𝐙ij,Ξ”i)βˆ’F(tk;𝐙ij,Ξ”i)]∏jβˆˆπ’ži,kF(tk;𝐙ij,Ξ”i)}, L=\prod_{k=1}^{K} \prod_{i=1}^{m} \left\{\prod_{j \in \mathcal{D}_{i,k}} [F(t_k^-; \boldsymbol{Z}_{ij}, \Delta_i) - F(t_k; \boldsymbol{Z}_{ij}, \Delta_i)] \prod_{j \in \mathcal{C}_{i,k}} F(t_k; \boldsymbol{Z}_{ij}, \Delta_i)\right\}, where F(tk;𝐙ij,Ξ”i)=P(TΜƒij>tk|𝐙ij,Ξ”i)=∏l∣tl≀tk{1βˆ’Ξ»(tl;𝐙ij,Ξ”i)}F(t_k; \boldsymbol{Z}_{ij}, \Delta_i) = P(\tilde{T}_{ij} > t_k|\boldsymbol{Z}_{ij}, \Delta_i) = \prod\limits_{l \mid t_{l} \leq t_k}\{1 - \lambda(t_l; \boldsymbol{Z}_{ij}, \Delta_i)\} is the survival function at time tkt_k corresponding to individual from center ii with covariate 𝐙ij\boldsymbol{Z}_{ij}. Let Ξ»0(tk)\lambda_0(t_k) be the discrete baseline hazard function at time tkt_k, then the hazard relationship for the discrete-time logistic model is defined as:

log(Ξ»(tk;𝐙ij,Ξ”i)1βˆ’Ξ»(tk;𝐙ij,Ξ”i))=log(Ξ»0(tk)1βˆ’Ξ»0(tk))+Ξ³i+𝐙ij𝛃.log(\frac{\lambda(t_k; \boldsymbol{Z}_{ij}, \Delta_i)}{1 - \lambda(t_k; \boldsymbol{Z}_{ij}, \Delta_i)}) = log(\frac{\lambda_0(t_k)}{1 - \lambda_0(t_k)}) + \gamma_i + \boldsymbol{Z}_{ij} \boldsymbol{\beta}. Let Ξ±k=log(Ξ»0(tk)1βˆ’Ξ»0(tk))\alpha_k = log(\frac{\lambda_0(t_k)}{1 - \lambda_0(t_k)}), then our problem of interest is estimating 𝛉=(𝛂𝐓,𝛄T,𝛃T)T\boldsymbol{\theta} = (\boldsymbol{\boldsymbol{\alpha}^T, \gamma}^T, \boldsymbol{\beta}^T)^T by minimizing:

QΞ»(𝛉)=βˆ’1nβˆ‘i=1mβˆ‘j=1niβˆ‘k=1kij{Ξ΄ij(tk)β‹…(Ξ±k+Ξ³i+𝐙ij𝛃)βˆ’log(1+eΞ±k+Ξ³i+𝐙ij𝛃)}+βˆ‘p=1PΞ»p|Ξ²p|Q_{\lambda}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i = 1}^m \sum_{j=1}^{n_i} \sum_{k=1}^{k_{ij}} \{\delta_{ij}\left(t_{k}\right) \cdot (\alpha_k + \gamma_i + \boldsymbol{Z}_{ij} \boldsymbol{\beta}) -log(1 + e^{\alpha_k + \gamma_i + \boldsymbol{Z}_{ij} \boldsymbol{\beta}}) \} + \sum_{p = 1}^P \lambda_{p} |\beta_p|

Three-layer iterative update procedure

outer layer: update the log-transformed baseline hazard 𝛂\boldsymbol{\alpha}

Given the previous iteration’s estimate of center effect 𝛄̃\tilde{\boldsymbol{\gamma}} and coefficient of risk factors 𝛃̃\tilde{\boldsymbol{\beta}}, we consider QΞ»,𝛂(𝛂)=βˆ’1nβˆ‘i=1mβˆ‘j=1niβˆ‘k=1kij{Ξ΄ij(tk)β‹…(Ξ±k+Ξ³Μƒi+𝐙ij𝛃̃)βˆ’log(1+eΞ±k+Ξ³Μƒi+𝐙ij𝛃̃)}Q_{\lambda, \boldsymbol{\alpha}}(\boldsymbol{\alpha}) = - \frac{1}{n} \sum\limits_{i = 1}^m \sum\limits_{j=1}^{n_i} \sum\limits_{k=1}^{k_{ij}} \{\delta_{ij}\left(t_{k}\right) \cdot (\alpha_k + \tilde{\gamma}_{i} + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}) -log(1 + e^{\alpha_k + \tilde{\gamma}_{i} + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}) \}. The Newton method allows us to update 𝛄\boldsymbol{\gamma} separately by: Ξ±Μ‚k=Ξ±Μƒk+IΞ»βˆ’1(Ξ±Μƒk)UΞ»(Ξ±Μƒk),\hat{\alpha}_k = \tilde{\alpha}_k + I_{\lambda}^{-1}(\tilde{\alpha}_k) U_{\lambda}(\tilde{\alpha}_k), where Ξ±Μƒk\tilde{\alpha}_k is the current value of Ξ±k\alpha_k, and $$U_{\lambda}(\tilde{\alpha}_k) = - \frac{1}{n} \sum_{i = 1}^m \{\sum_{j = 1}^{n_i} \delta_{ij} \left(t_{k}\right) - \sum_{j|T_{ij} \geq t_k} \frac{e^{\tilde{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}{1 + e^{\tilde{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}\} \\ I_{\lambda}(\tilde{\alpha}_k) = - \frac{1}{n} \sum_{i = 1}^m \sum_{j|T_{ij} \geq t_k} \frac{e^{\tilde{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}{(1 + e^{\tilde{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}})^2}.$$

middle layer: update the provider effect 𝛄\boldsymbol{\gamma}

Given the 𝛂̂\hat{\boldsymbol{\alpha}} updated above and the most recently updated 𝛃̃\tilde{\boldsymbol{\beta}}, we consider QΞ»,𝛄(𝛄)=βˆ’1nβˆ‘i=1mβˆ‘j=1niβˆ‘k=1kij{Ξ΄ij(tk)β‹…(Ξ±Μ‚k+Ξ³i+𝐙ij𝛃̃)βˆ’log(1+eΞ±Μ‚k+Ξ³i+𝐙ij𝛃̃)}Q_{\lambda, \boldsymbol{\gamma}}(\boldsymbol{\gamma}) = - \frac{1}{n} \sum\limits_{i = 1}^m \sum\limits_{j=1}^{n_i} \sum\limits_{k=1}^{k_{ij}} \{\delta_{ij}\left(t_{k}\right) \cdot (\hat{\alpha}_k + \gamma_{i} + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}) -log(1 + e^{\hat{\alpha}_k + \gamma_{i} + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}) \}. Use a similar one-step Newton method we should have Ξ³Μ‚i=Ξ³Μƒi+IΞ»βˆ’1(Ξ³Μƒi)UΞ»(Ξ³Μƒi),\hat{\gamma}_i = \tilde{\gamma}_i + I_{\lambda}^{-1}(\tilde{\gamma}_i) U_{\lambda}(\tilde{\gamma}_i), where Ξ³i\gamma_{i} represent the most recently updated value of effect of center ii, and $$U_{\lambda}(\tilde{\gamma}_i) = - \frac{1}{n} \sum_{j = 1}^{n_i} \sum_{k = 1}^{k_{ij}} \{\delta_{ij} \left(t_{k}\right) - \frac{e^{\hat{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}{1 + e^{\hat{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}\} \\ I_{\lambda}(\tilde{\gamma}_i) = - \frac{1}{n} \sum_{j = 1}^{n_i} \sum_{k = 1}^{k_{ij}} \frac{e^{\hat{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}}}{(1 + e^{\hat{\alpha}_k + \tilde{\gamma}_i + \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}})^2}.$$

It should be noted that the effect of the first provider is set to zero (as the reference group) to prevent issues of multicollinearity.

inner layer: update the covariate coefficient 𝛃\boldsymbol{\beta}

Based on the 𝛂̂\hat{\boldsymbol{\alpha}} and 𝛄̂\hat{\boldsymbol{\gamma}} updated from the previous two steps, define β„’Ξ²(𝛃)=βˆ’1nβˆ‘i=1mβˆ‘j=1niβˆ‘k=1kij{Ξ΄ij(tk)β‹…(Ξ±Μ‚k+Ξ³Μ‚i+𝐙ij𝛃)βˆ’log(1+eΞ±Μ‚k+Ξ³Μ‚i+𝐙ij𝛃)}\mathcal{L}_{\beta}(\boldsymbol{\beta}) = - \frac{1}{n} \sum\limits_{i = 1}^m \sum\limits_{j=1}^{n_i} \sum\limits_{k=1}^{k_{ij}} \{\delta_{ij}\left(t_{k}\right) \cdot (\hat{\alpha}_k + \hat{\gamma}_{i} + \boldsymbol{Z}_{ij} \boldsymbol{\beta}) -log(1 + e^{\hat{\alpha}_k + \hat{\gamma}_{i} + \boldsymbol{Z}_{ij} \boldsymbol{\beta}}) \} and consider QΞ»,𝛃(𝛃)=1nβ„’Ξ²(𝛃)+βˆ‘k=1pΞ»k|Ξ²k|.Q_{\lambda, \boldsymbol{\beta}}(\boldsymbol{\beta}) = \frac{1}{n} \mathcal{L}_{\beta}(\boldsymbol{\beta}) + \sum_{k = 1}^p \lambda_{k} |\beta_k|.

Denote Z(Ξ·Μƒij)=Ξ·Μƒijβˆ’{β„’Ξ·β€³(π›ˆΜƒ)βˆ’1β„’Ξ·β€²(π›ˆΜƒ)}ij=Ξ·Μƒij+βˆ‘k=1kij[Ξ΄ij(tk)βˆ’eΞ±Μ‚k+Ξ·Μƒij1+eΞ±Μ‚k+Ξ·Μƒij]βˆ‘k=1kijeΞ±Μ‚k+Ξ·Μƒij(1+eΞ±Μ‚k+Ξ·Μƒij)2,Z(\tilde{\eta}_{ij}) = \tilde{\eta}_{ij} - \{\mathcal{L}_{\eta}''(\tilde{\boldsymbol{\eta}})^{-1} \mathcal{L}_{\eta}'(\tilde{\boldsymbol{\eta}})\}_{ij} = \tilde{\eta}_{ij} + \frac{\sum\limits_{k = 1}^{k_{ij}}[\delta_{ij}(t_k) - \frac{e^{\hat{\alpha}_k + \tilde{\eta}_{ij}}}{1 + e^{\hat{\alpha}_k + \tilde{\eta}_{ij}}}]}{\sum\limits_{k = 1}^{k_{ij}} \frac{e^{\hat{\alpha}_k + \tilde{\eta}_{ij}}}{(1 + e^{\hat{\alpha}_k + \tilde{\eta}_{ij}})^2}}, and Ο‰Μƒij=βˆ‘k=1kijeΞ±Μ‚k+Ξ·Μƒij(1+eΞ±Μ‚k+Ξ·Μƒij)2,\tilde{\omega}_{ij} = \sum\limits_{k = 1}^{k_{ij}} \frac{e^{\hat{\alpha}_k + \tilde{\eta}_{ij}}}{(1 + e^{\hat{\alpha}_k + \tilde{\eta}_{ij}})^2}, then the coordinate-wise updating function will be given by: Ξ²p=S{βˆ‘i=1mβˆ‘j=1niwΜƒijZijp(Z(Ξ·Μƒij)βˆ’Ξ³Μ‚iβˆ’π™ij𝛃̃(βˆ’p)),nΞ»k}βˆ‘i=1mβˆ‘j=1niwΜƒijZijp2,\beta_p = \frac{S\{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \tilde{w}_{ij} {Z_{ijp}} (Z(\tilde{\eta}_{ij}) - \hat{\gamma}_i - \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}_{(-p)}), n\lambda_k\}}{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} \tilde{w}_{ij} {Z_{ijp}}^2}, where SS is the same soft-thresholding operator defined above.

MM algorithm can also be applied for solving this problem since βˆ‘k=1kijeΞ±Μ‚k+Ξ·ij(1+eΞ±Μ‚k+Ξ·ij)2<14kij\sum\limits_{k = 1}^{k_{ij}} \frac{e^{\hat{\alpha}_{k} + \eta_{ij}}}{(1 + e^{\hat{\alpha}_{k} + \eta_{ij}})^2} < \frac{1}{4} k_{ij}. The majorizing surrogate function is constructed based on 𝐖=(14k11β‹±14km,nm)nΓ—n,\boldsymbol{W} = \begin{pmatrix} \frac{1}{4}k_{11} & & \\ & \ddots & \\ & & \frac{1}{4}k_{m,n_m} \end{pmatrix}_{n \times n}, and the corresponding updating function is given by Ξ²p=S{βˆ‘i=1mβˆ‘j=1nikijZijp(Z(Ξ·Μƒij)βˆ’Ξ³Μ‚iβˆ’π™ij𝛃̃(βˆ’p)),4nΞ»k}βˆ‘i=1mβˆ‘j=1nikijZijp2.\beta_p = \frac{S\{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} k_{ij} {Z_{ijp}} (Z(\tilde{\eta}_{ij}) - \hat{\gamma}_i - \boldsymbol{Z}_{ij} \tilde{\boldsymbol{\beta}}_{(-p)}), 4n\lambda_k\}}{\sum\limits_{i = 1}^m \sum\limits_{j = 1}^{n_i} k_{ij} {Z_{ijp}}^2}.