Skip to contents

This function generates four datasets (external, local, validation, and test) for discrete-time competing risks models. The data are simulated based on user-specified correlation level beta_cor between the local and external regression coefficients.

Usage

simulate_CPFT(
  beta_cor = 0.9,
  N_ext = 5000,
  N_loc = 2000,
  N_val = 200,
  N_test = 5000,
  p = 4,
  Tmax = 10,
  nCause = 2,
  mu = 1,
  sigma = 0.05,
  seed = 123
)

Arguments

beta_cor

Numeric correlation level between external and local models. Must be one of 1.0, 0.9, 0.5, 0.1, 0.

N_ext

Sample size for external data (default: 5000).

N_loc

Sample size for local data (default: 2000).

N_val

Sample size for validation data (default: 200).

N_test

Sample size for test data (default: 5000).

p

Number of covariates (default: 4).

Tmax

Maximum follow-up time (discrete intervals) (default: 10).

nCause

Number of competing causes (default: 2).

mu

Mean of covariates (default: 1).

sigma

Standard deviation of covariates (default: 0.05).

seed

Random seed for reproducibility (default: 123).

Value

A list containing:

external

List with simulated external data: X, Z, y

local

List with simulated local data: X, Z, y

validation

List with simulated validation data: X, Z, y

test

List with simulated test data: X, Z, y

Betat_l

Baseline time coefficients for local model

Betav_l

Covariate coefficients for local model

Betat_p

Baseline time coefficients for external model

Betav_p

Covariate coefficients for external model