Competing Risks with Relative Entropy Integration using XGBoost and Composite Failure Time Prior
Source:R/CompRiskRE_XGBoost_FT.R
CompRiskRE_XGBoost_FT.Rd
This function implements the Relative Entropy (RE) framework for discrete-time competing risks models where the prior model is specified in a composite failure time formulation and the local model is fit using XGBoost.
Usage
CompRiskRE_XGBoost_FT(
prior_model,
train_data,
test_data,
eta,
xgb_params = list(objective = "multi:softprob", eval_metric = "mlogloss", num_class =
3, max.depth = 4),
nrounds = 100,
maxiter = 1,
eps = 1e-06
)
Arguments
- prior_model
A fitted prior multinomial model.
- train_data
A
data.frame
containing training data.- test_data
A
data.frame
containing test data.- eta
Numeric vector of RE regularization parameters.
- xgb_params
A list of XGBoost parameters..
- nrounds
Integer, number of boosting rounds for XGBoost (default: 100).
- maxiter
Integer, maximum number of RE updates in
priorFTKL_XGBoost
(default: 1).- eps
Numeric tolerance for convergence in
priorFTKL_XGBoost
(default: 1e-6).