Competing Risks with Relative Entropy Integration (Composite Prior, XGBoost)
Source:R/CompRiskRE_XGBoost_CP.R
CompRiskRE_XGBoost_CP.Rd
This function implements the Relative Entropy (RE) framework for discrete-time competing risks models where the prior model is specified in a composite failure time formulation and both prior/local models are fit using XGBoost.
Usage
CompRiskRE_XGBoost_CP(
prior_model,
train_data,
test_data,
eta,
xgb_params = list(objective = "multi:softprob", eval_metric = "mlogloss", num_class =
3, max.depth = 4),
nrounds = 100
)
Arguments
- prior_model
A fitted prior XGBoost model.
- train_data
A
data.frame
containing training data with columns: covariates, discrete follow-up time (time_y
), and event indicator (event
).- test_data
A
data.frame
containing test data with the same structure astrain_data
.- eta
Numeric vector of RE regularization parameters.
- xgb_params
A list of XGBoost parameters. Defaults to
list(objective = "multi:softprob", eval_metric = "mlogloss", num_class = 3, max.depth = 4)
.- nrounds
Integer, number of boosting rounds for XGBoost (default: 100).
Value
A list with components:
- models
A named list of fitted XGBoost models for \(\eta = 0\) and each supplied
eta
.- PD
A numeric vector of predictive deviance values on the test data.
- prior_PD
Predictive deviance of the prior model on the test data.
- eta
The vector of
eta
values, including \(0\) for the baseline model.